IceCube: Diffuse [and Point Source] Results for GRB and AGN Searches

Greg Sullivan University of Maryland For the IceCube Collaboration

> Neutrino 2012 Kyoto, Japan 8 June 2012

The IceCube Collaboration

39 Institutions ~220 collaborators

Stockholm University Uppsala Universitet

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University Pennsylvania State University** Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California-Berkeley **University of California-Irvine** University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison **University of Wisconsin-River Falls**

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

University of the West Indies

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaide

University of Canterbury

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

Concept of Large Neutrino Telescopes

Cosmic Rays and Neutrinos

Driving theme: Origin of Cosmic Rays

Neutrinos Provide a Unique Window on the HE Universe

Universe opaque to high energy (>10's TeV) photons:

Cosmogenic "GZK" neutrinos

Protons deflected by magnetic field for $E < 10^{19} eV$

- Not pointing back for distant sources
- 1) Neutrinos are a candidate for high energy (>10TeV) cosmic astronomy!
- 2) Neutrinos provide unambiguous evidence of hadronic acceleration!

Neutrino Telescopes – A Brief Heritage

Telescopes for TeV energies:

- First envisioned by Greisen, Markov 1960 — Conceptually simple but technically challenging
- Pioneering effort: DUMAND near Hawaii
- First and second generation in 90's
 proof of principle : Baikal, AMANDA, NESTOR.
- Current generation experiments
 - IceCube, ANTARES, Auger
- The Era of km³ Scale Detectors is Finally Here
 - IceCube completed construction Dec 18, 2010 !
 - IC 86-string Data Taking Began May 13, 2011
 - km3NeT project in Mediterranean, GVD in Bakail

IceCube Detector

Detector Completion Dec 2010

IceCube at South Pole

a LIFILITY

Operational support: ICL maintenance ~60 kW power to electronics 90 GB/day filtered out and sent on satellite 2 winterovers summer population (around 5-7 pop Dec - Jan)

Detection Methods

Muon Events from Data

Downgoing muon bundle

IceCube Detector Status, Rates

	Strings	Data (year)	Livetime	trigger rate (Hz)	HE v rate (per day)
	AMANDAII(19)	2000-2006	3.8 years	100	~5 / day
	IC40	2008-09	375 days	1100	~40/ day
	IC59	2009-10	350 days	1900	~70/ day
epCore	→ IC79	2010-11	320 days	2250	~100/day
taneu	IC86-I	2011-2012	~ year	2700	processing
	IC86-II	current		2700	running

Run transition typically mid May

- Detector performance parameters increase faster than the number of strings
 - Longer muon tracks (km scale)

De

Ins

Improved analysis techniques

IC86 achieving ~ 99% uptime

Search Strategies for Astrophysical Neutrinos

IceCube Diffuse Neutrino Searches

- Look for neutrino events at high energy, above the rapidly falling atmospheric neutrino spectrum.
 - ν_{μ} signal looks for upward going tracks
 - Cascade events (CC ν_{e} and ν_{τ} , NC $\nu_{\mu,\tau,e}$) contained showers
- v_{μ} diffuse search
 - IC 40-string published [Phys. Rev. D 84, 082001 (2011) arXiv:1104.5187v5]
 - New Results from IC 59-string v_{μ} search
- Cascade search
 - updated Results for IC 40-string search

IC 59-string diffuse v $_{\mu}$ Search

micz

Search for upward going tracks at energies above atmospheric neutrino spectrum.

Relative rates in IceCube (at trigger level, before analysis cuts)

Conventional v_{μ} : Honda 2006 Prompt v_{μ} : Engberg et al. Astrophysical E⁻²: at IC40 limit

Atm. v

cosmic v

IC 59-string diffuse ν_{μ} effective area

Analysis cuts to reject

- Down-going events
- mis-reconstructed CR muons
- multiple CR muons

Achieve:

- v purity of 99.8%
- Atm. v efficiency ~12%
- $E^{-2} v$ efficiency ~30%

 ν_{μ} effective area (m²) vs. ν_{μ} energy (GeV) for various zenith angle ranges

Neutrino Fluxes at analysis level

IC59 Diffuse v_{μ} Search fit to data

Livetime: 348 days Events: 21943

Highest Energy event in IC59 Diffuse muon neutrino sample

Current v_{μ} Diffuse limits (single flavor)

IC40 v Cascade Diffuse Search

signal: v induced particle showers (v_e CC + all-flavor NC)

background: atm. µ

difficult background: atm. μ with catastrophic energy losses

> The analysis uses a Boosted Decision Tree optimized for removing atmospheric μ's

Will Improve with full Volume of IceCube, which is qualitatively a better detector for cascades!

IceCube 40-string search for neutrinos using cascade events

Found 14 "cascade" events after cuts in a total livetime of 373.6 days

Run	Date	BDT response	Energy
110860	18 th April 2008	0.268	29 TeV
110862	19 th April 2008	0.375	31 TeV
110884	23 rd April 2008	0.416	175 TeV
110964	10 th May 2008	0.230	27 TeV
111076	29 th May 2008	0.225	41 TeV
111113	5 th June 2008	0.380	174 TeV
111281	7 th July 2008	0.293	31 TeV
111558	30 th August 2008	0.232	45 TeV
111780	16 th October 2008	0.236	144 TeV
111917	8 th November 2008	0.279	32 TeV
112406	14 th January 2009	0.203	47 TeV
112782	6 th February 2009	0.219	57 TeV
113693	12 th May 2009	0.295	40 TeV
113802	17 th May 2009	0,281	27 TeV

IC40 Diffuse Cascade Search Results

Summary of IceCube diffuse astrophysical neutrino searches

- Progress in both muon and cascade channels
- IC 40-string data
 - $-v_{\mu}$ results published
 - Preliminary results for cascade search
- IC 59-string data
 - $-v_{\mu}$ preliminary results
- IceCube has achieved sensitivity below Waxman-Bahcall with data from partial detector

– Upward fluctuation in 59-string data?

• We have accumulated 2+ years of data with "full" detector (79, 86)

Sensitivity well below W-B.

Search Strategies for Astrophysical Neutrinos

2) Point Source & GRB search use direction [and] timing to look for signal above isotropic atmospheric neutrino background

Point Source Search in Skymap (IC40+59)

43339 up-going + 64230 down-going from 723 days

unbinned likelihood

$$L(n_s, \gamma) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i + \left(1 - \frac{n_s}{N} \right) B_i \right)$$

signal term contains angular and energy pdf

test statistics:

$$\lambda = \frac{L(\hat{n}_s, \hat{\gamma})}{L(n_s = 0)} \Rightarrow p - value$$

IceCube selected sources (13 galactic SNR etc, 30 extragalactic active galaxies, etc.)

No significant detections at this point

Source	RA (deg)	Dec (deg)	Туре	Distance	P-value	PKS 0235+164	39.66	16.62	LBL	z = 0.94	0.18
Cyg OB2	308.08	41.51	UNID	-		PKS 0528+134	82.73	13.53	FSRQ	z = 2.060	0.49
MGRO J2019+37	305.22	36.83	PWN	-		PKS 1502+106	226.10	10.49	FSRQ	z = 0.56/1.839	
MGRO J 1908+06	286.98	6.27	SNR	-	0.38	3C 273	187.28	2.05	FSRQ	z = 0.158	
Cas A	350.85	58.81	SNR	3.4 kpc	-	NGC 1275	49.95	41.51	Seyfert Galaxy	z = 0.017559	
IC443	94.18	22.53	SNR	1.5 kpc	-	СудА	299.87	40.73	Radio-loud Galaxy	z = 0.056146	0.44
Geminga	98.48	17.77	Pulsar	100 pc							
Crab Nebula	83.63	22.01	SNR	2 kpc		Sg⊢A*	266.42	-29.01	Galactic Center	8.5 kpc	0.49
IE\$ 1959+650	300.00	65.15	HBL	z = 0.048		PKS 0537-441	84.71	-44.09	LBL	z = 0.896	0.44
IES 2344+514	356.77	51.70	HBL	z = 0.044		Cen A	201.37	-43.02	FRI	3.8 Mpc	0.14
3C66A	35.67	43.04	Blazar	z = 0.44	0.42	PKS 1454-354	224.36	-35.65	FSRO	z = 1.42	0.14
H ∣426+428	2 7.14	42.67	HBL	z = 0.129	-	PKS 2155-304	329.72	-30.23	HBI	z = 0.116	
BL Lac	330.68	42.28	HBL	z = 0.069	0.4	DKS 1622 207	244.53	20.84	ESBO	~ - 0.815	0.27
Mrk 501	253.47	39.76	HBL	z = 0.034	0.19	FK3 1022-277	240.33	-27.00	T SRQ	2 - 0.013	0.27
Mrk 421	166.11	38.21	HBL	z = 0.031		QSO 1730-130	263.26	-13.08	FSRQ	z = 0.902	
W Comae	185.38	28.23	HBL	z = 0.1020		PKS 1406-076	212.24	-7.87	FSRQ	z = 1.494	0.36
IE\$ 0229+200	38.20	20.29	HBL	z = 0. 39	0.39	QSO 2022-077	306.42	-7.64	FSRQ	z = 1.39	
M87	187.71	12.39	BL Lac	z = 0.0042	0.38	3C279	194.05	-5.79	FSRQ	z = 0.536	0.45
\$5 0716+71	110.47	71.34	LBL	z > 0.3	0.49	түсно	6.36	64.18	SNR	2.4 kpc	
M82	148.97	69.68	Starbust	3.86 Mpc		Cyg X-I	299.59	35.20	MQSO	2.5 kpc	
3C 123.0	69.27	29.67	FRII	1038 Mpc	-	Cyg X-3	308.11	40.96	MQSO	9 kpc	
3C 454.3	343.49	16.15	FSRQ	z = 0.859	0.48	LSI 303	40. 3	61.23	MQSO	2 kpc	
4C 38.4I	248.81	38.13	FSRQ	z = 1.814	0.3	SS433	287.96	4.98	MQSO	1.5 kpc	0.48

Neutrino Point Source Upper Limits

IceCube was designed to need several years data of full detector for sensitivity to point source detection

Gamma Ray Bursts

- Gamma-Ray Bursts are short bursts of gamma rays, a few seconds in duration
- Brighter than rest of gamma ray sky
 - Afterglow lasting much longer
- Several generations of satellite-based observations have shown:
 - Extra-galactic origin
 - Gamma-ray emission beamed
- GRBs are a compelling candidate for the source of acceleration for UHECRs.
- Acceleration conditions required to produce the observed gamma rays would also be sufficient for UHECR production
- Observed gamma-ray burst energy injection rate into Universe well matched to observed UHECR energy

Beamed emission in Jet

- Model dependent stacked search for a neutrino signal in coincidence with observed GRB gamma signals
 - Northern hemisphere GRB bursts are considered.
 - Spatial & time correlation yields very low background (~Background Free Search)
 - Per-burst neutrino fluence and spectra are calculated based on the measured gamma-ray spectra. (Guetta, et al. (2004))
- Model independent search more generic on wider time-scale
 - Up to ± 1 day and with generic (E⁻²) spectrum
 - Includes Southern hemisphere for IC59

IceCube GRB Summary

- 3 Yrs (IC22, 40, 59) without a GRB neutrino detection
- Combined (IC40, IC59) search results → Nature Paper
 - Guetta et al fireball: Expect 8.4 events, see $0 \rightarrow 0.27$
 - Model independent search: no detection

• Where are the neutrinos?

- GRB fireball neutrino flux
 - Theory in Fireball model is being revisited
 - Recalculations change predicted neutrino significantly
- GRBs as the origin of cosmic rays excluded in some models
 - E.g. neutron models where neutrino flux is strongly coupled to the observed cosmic ray flux
- IC79, 86-I already recorded 86-2 will go near real-time
 - Sensitivity scales linearly with exposure
 - Waiting for neutrinos from GRBs!

IceCube Deep Core (low energy & contained events)

Motivation:

- Low mass WIMP search (indirect DM)
- Neutrino oscillation physics
 - extend LE, ν_{μ} disappearance, ν_{τ}

appearance

- southern hemisphere $\rightarrow 4\pi$ detector

Low Energy Cascades (DeepCore)

- Cascades are the signature of neutral current, ν_e and ν_τ
- First observation of atmospheric neutrinoinduced cascades in IC79 with DeepCore

Standard Atmospheric Neutrino Oscillation in the energy region of interest for DeepCore

neutrino energy-nadir angle plane P_{e→e} P_{ē→ē} 0.995 0.97 0.9 E_v [GeV] 101 0.8 0.7 electron neutrino 0.6 disappearance 0.5 10² 10 0.4 0.3 0.2 0.1 [GeV] ____ 0.03 0.005 0.001

IceCube: First Step in Neutrino Oscillation Physics

- Strategy was to make **simple** cuts and reconstruction in Deep Core to extend sample to Low energies and look for consistency with standard neutrino oscillations.
- Not optimized for DeepCore efficiency, angular resolution,...
- Ongoing Work: more "sophisticated" analysis for measurement of oscillation parameters

	Data (317.9 days)	MC, std oscillation	MC, no oscillation
Low energy	719	789 +- 28 (stat)	1015 +- 32 (stat)
High energy	39639	33710 +- 770 (stat)	33810 +- 770 (stat)

4.5

5

log(neutrino energy/GeV)

5.5

1.5

2

2.5

3

3.5

Zenith Angle Distribution

IceCube ν_{μ} disappearance

delta chi-square = 33.3, p-value = 1×10^{-8}

Cross Check: The energy-proxy "Nchannel" distribution of the LE sample

Distribution of the number of hit DOMs for vertical events (cos(theta)<-0.55) of the low-energy event selection. *Errors are statistical only.*

- IceCube DeepCore has now explored the energy region where standard neutrino oscillation are expected with IC79
- the non-oscillation hypothesis is rejected with high statistical significance.
- Data are in good agreement with standard oscillation expected from global best fit mixing parameters available from the literature.
- Systematic effects have been investigated and factorized in normalization, correlated and uncorrelated terms.

IceCube and Neutrino Oscillations

- We plan to investigate the oscillation parameters and test non standard oscillation scenarios (like sterile neutrinos).
- More sophisticated reconstruction methods and an improved knowledge of the optical properties of the Antarctic deep ice will provide a reduction of the overall systematic uncertainty.
- The observation of atmospheric neutrino oscillation provide a starting point for the feasibility study of a next infill phase, Precision IceCube Next Generation Upgrade → PINGU.
- With 20 additional strings and a set of new calibration instruments, PINGU will target precise measurements in the atmospheric neutrino sector.

Neutrino Oscillations in PINGU?

PINGU is a concept for even higher density infill to DeepCore that lowers the energy range of IceCube to several GeV range with MT's effective volume

Ref: E. Kh. Akhmedov, S. Razzaque, A. Y. Smirnov arXiv:1205.7071 [hep-ph]

Statistical significance of Normal versus Inverted Mass Hierarchy.

Sets PINGU requirements on:

- 1) Energy Resolution
- 2) Angular Resolution
- 3) Systematic Errors

We are currently studying the feasibility of reaching the needed requirements.

 $3\sigma - 11\sigma$ in 5 Years of running

39

Includes systematic error ≤ 10%

Other Talks and Posters

Talks

IceCube: ultra-high energy neutrinos (A. Ishihara) A review of future experiments (A. Karle) A review of indirect WIMP search exp. (C. Rott)

Posters

- 11 2, Search for Neutrinos from The Galactic Plane and Other Astro-physical Extended Sources with IceCube. Naoko Kurahashi
- 12 3, A search for the extremely high energy cosmogenic neutrinos with the IceCube 2010-2011 data. Keiichi Mase
- 13 1, Searches for Neutrinos from GRBs with IceCube. Erik Blaufuss
- 14 2, Extending IceCube-DeepCore with PINGU. Elisa Resconi, Darren R Grant
- 15 3, Search for High-Energy Neutrino Point Sources with IceCube. Sirin Odrowski
- 25 1, Supernova detection with IceCube and beyond. Ronald Bruijn
- 29 2, Towards an extragalactic Supernova neutrino detector at the South Pole. Markus Voge
- 40 1, Atmospheric neutrino oscillations with IceCube/DeepCore. Andreas Gross
- 73 1, Determining the dark matter properties with neutrinos in Ice-Cube/DeepCore. C. R. Das
- 74 2, Search for Dark Matter Captured in the Sun with the IceCube Neutrino Observatory. M. Danninger, C.
 Rott and E. Strahler
- 75 3, Search for Dark Matter in Galactic and Extragalactic Halos with the IceCube Neutrino Observatory. Carsten Rott
- 76 1, Search for Secluded Dark Matter using the IceCube Neutrino Observatory. Jonathan Miller

Summary

• IceCube has completed construction and has already surpassed expected performance.

The era of km³ neutrino telescopes has begun!

Neutrinos observed from ~10 GeV to ~1 PeV (5 orders of magnitude)

- After decades... IceCube detector (IC40 59, 79, 86) at sensitivities of Astrophysical importance
 - GRB limits challenging the models (Nature paper)
 - Diffuse at W-B bound: first HE astrophysical neutrinos?
 - EHE: in the range of GZK predictions \rightarrow A. Ishihara's Talk
 - o point source limits all sky, time (in)dependent, candidate list,
 - WIMP limits (C. Rott's Talk), Monopole limit well below "Parker Bound"
 - Multi-messenger follow-up program (optical, X-ray, γ-ray, Gravity)

Measurements:

- atmospheric neutrino and muon spectrum, lorentz invariance, neutrino oscillations
- cosmic ray anisotropy on various angular scales, CR composition: IceCube/IceTop has unique capabilities
- Future Upgrades: exploit existing facility and infrastructure: → A. Karle's Talk
 - DeepCore: low energy extension (PINGU) \rightarrow atmospheric neutrino oscillations,
 - Non-IceCube opportunities: high energy GZK with radio, DM-Ice

Stay tuned !

Thank You

Backup

The drill heating plant

Thermal power: 5 MW Pressure: 140 bar Flow: 800 L/m (90°C) 24 h to drill to 2500m Most importantly: an excellent crew of drillers!

Drilling and deployment Dec. 13-18, 2010

45

60 photomultipliers/string Installation time: 10h/string

Cables meet sensors for the first time during the deployment. Quality program requires close collaboration with manufacturers.

Moon Shadow of Cosmic Rays using muons in the IceCube Detector

Moon shadow observed in muons – Check on IceCube pointing

Results of fit (Preliminary)

- astrophysical norm [10⁻⁸ E² GeV cm⁻¹ s⁻¹ sr⁻¹]: 0.27 + 0.59 (consistent with zero)
- prompt norm [Enberg + Gaisser knee]: 0 + 1.216
- conventional norm [Honda]: 1.068 +/- 0.020 (increased normalization by 7%)
- DOM efficiency scaling factor: 0.996 +/- 0.013
- Delta gamma (E^{-(gamma + Delta gamma)}): -0.037 +/- 0.023 (spectrum is harder than our input default)
- Pion-Kaon ratio: 1.133 +/- 0.105

(~ 13% more kaons than in the Honda2006 standard)

